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Two-Spin-Majority Cellular Automaton as a 
Model of 2D Cluster and Interface Growth 
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A new probabilistic cellular automaton model is introduced to simulate cluster 
and interface growth in two dimensions. The dynamics of this model is an exten- 
sion to higher dimensions of the compact directed percolation studied by Essam. 
Numerical results indicate that the two-dimensional cluster coarsening and 
growth can be described only approximately by the conventional cluster size 
scaling due to a crossover in the growth mode. The spreading of the initially flat 
interface follows a purely diffusional, t ~/2, law. 

KEY WORDS:  Cluster size scaling; cellular automata; interfacial dynamics; 
phase separation. 

Studies of cluster properties and, specifically, the cluster size distribution in 
aggregation models (1) and at phase separation, e.g., spinodal decomposi- 
tion, (2'3) usually involve complicated systems and require substantial 
numerical resources. It is therefore of interest to develop simplied lattice 
cellular automata-type models which show effects reminiscent of phase 
separation and cluster coarsening. The price paid is that usually such 
models do not have detailed balance dynamics. One such simplified model 
is introduced in this note; we report various numerical results on the 
cluster size distribution and on certain interracial properties. 

The idea of mimicking spinodal decomposition by a cellular 
automaton-type generalized voter model was introduced by Scheucher and 
Spohn. (4) The dynamics of their model is given by the rule that a spin _+ 1 
on a hypercubic lattice flips at the rate 2n/2D, n = 0, 1, 2 ..... 2D, where n/2D 
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is the fraction of its neighbors pointing in the opposite direction, while 2 
sets the time scale. Scheucher and Spohn (4~ presented results of numerical 
simulations for the cluster size distribution in two dimensions. They found 
that after a short time the cluster size distribution follows an effective 
power law behavior. They further commented that, although the apparent 
exponent ~ values (see below) vary somewhat with time, there is no 
systematic time dependence. 

For  varying dimensionality D, the voter model (4) shows "phase separa- 
tion"-type behavior (i.e., the coarsening of the _+-spin clusters) only in 
D = 1, 2, but not for higher dimensions, D = 3, 4 ..... This property was 
argued for (k) based on the fact that the dynamics of the model relates to the 
statistics of two random walks meeting. 

In this note we introduce the two-spin-majority automaton model 
which has the following new useful features: (a) the dynamics is easy to 
simulate numerically and it generalizes in an obvious way from D = 1 to 
D = 2 and to higher D values; (b) the model involves a parameter p which 
can be varied to break the -t-1 spin symmetry, thus favoring the + phase 
for p > 1/2 and the - phase for p < 1/2; see below. This model is an exten- 
sion to (D + time) > 2 of the (1 + time)-dimensional directed compact 
percolation. (5) We emphasize the (D = 2)-dimensional cluster and interface 
growth aspects in this note. A study of exponents in the (D + time) directed 
percolation nomenclature would be of interest, but it is not attempted here. 

Let us consider first the one-dimensional ease. If the time axis is 
plotted perpendicular to the direction of the one-dimensional space axis, 
then we define the (1 + 1)-dimensional "connectivity" to have the resulting 
square lattice with the axes rotated 45 ~ with respect to the space and time 
directions. The particular automaton rule is as follows: if two adjacent 
spins are both + 1 (both - 1) at time t, then at time (t + I) there will be 
spin + 1 ( - 1 ) at the interstice between them. If one spin has the value + 1, 
the other the value - 1 ,  then the new spin is chosen to have the value + 1 
with probability p, and - 1  otherwise (probability 1 -  p). The model was 
originally formulated (5) as a compact-cluster directed percolation in (1 + 1) 
dimensions. In the one-dimensional nomenclature, the interstices form the 
same lattice as the original one, shifted by half the lattice spacing. 

The kinetics of the model in the one-dimensional case is characterized 
by the dynamics of the domain walls separating + and - regions. Indeed, 
the domain wall motion is diffusional for p =  1/2, and pairs of walls 
annihilate in each encounter, thus leading to cluster growth. While there 
are no exact results for the cluster size distribution for this model, 
numerous numerical, exact, and asymptotic results were obtained (5 10) 
for several diffusive-domain-wall models in one dimension, for many 
interesting properties. These results will not be reviewed here. (Cluster size 
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exponent values in one dimension will be quoted below.) For  p > 1/2 and 
p < 1/2 the domain wall motion is that of diffusion with the superimposed 
drift that favors growth of the + clusters or - clusters, respectively. The 
model is obviously self-diml with respect to (+  ~-~-  ) accompanied by 
( p ~  1 - p) .  

In higher dimensions, in a given time step one considers all pairs of 
sites in one particular lattice direction and updates the spins according to 
the one-dimensional rule. The resulting spins in the interstices form the 
same hypercubic lattice, shifted by half the lattice spacing. One then 
proceeds in the same way with pairs along the second dimension, and so 
on. Thus, the full round of updating takes D time steps. In those time steps 
the updating rule is applied consecutively along the D lattice axes. 

For  p > 1/2, the system evolves from any randomly populated initial 
configuration toward an equilibrium state consisting of + l's everywhere. 
Even though the probability p can take on values in [0, 1 ], in practice our 
simulations show that the approach to the + state is very rapid unless p 
is quite close to 1/2. Convenient p values to observe a growth of a + 
cluster from a small seed cluster in the background of - spins are about 
p ~- 0.51 or somewhat greater. 

The self-dual system at p = 1/2 corresponds to a kinetic first-order 
transition. As mentioned, the present model has no equilibrium states and 
detailed balance is not satisfied. The states + are "absorbing" from the 
point of view of the stochastic dynamics, and they are equally probable at 
p = 1/2 (for general initial conditions). The coarsening of the __ clusters at 
p = 1/2 was studied numerically in two dimensions; see below. As for the 
voter model, (4) the behavior in higher dimensions may differ from that in 
two dimensions. The present study was restricted to D = 2. 

Detailed structural information is provided by the cluster size distribu- 
tion. We start with a random configuration of spins on a 200 x 200 square 
lattice with helical boundary conditions along one direction and periodic 
boundary conditions along the other. The number of the s-site clusters 
(both + and - ) ,  normalized per lattice site, ns(t), is determined by the 
Hoshen-Kopelman (m method. Cluster sizes s are grouped for statistical 
purposes, with a separate bin for each doubling in size, i.e., a bin 
corresponds to cluster sizes 2 b to (2 b + l -  1), b =0 ,  1, 2 ..... The arithmetic 
mean value of a bin's range is denoted by ~. Thus, the bins cover sizes 1 
to 1, 2 to 3, 4 to 7, etc., so that g is 1, 2.5, 5.5, respectively. Note that for 
studying power law cluster size behavior (see below) one can use the 
geometrical mean value for each bin or several other size measures; the 
results are not sensitive to a particular choice. The cumulative cluster num- 
bers for each bin will be denoted n~. The results for 4, 16, 64, and 256 
Monte Carlo (MC) steps are presented in Fig. 1. Each Monte Carlo step 
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Fig. 1. Cluster size distribution ns(t) vs. s for the two-spin-majority model on a 200x200 
square lattice for t = 4 MCs (+), 16 MCs (O), 64 MCs (,), and 256 MCs (�9 

(MCs) here means a full update along D - - 2  directions, i.e., two original 
unit-time steps according to the definition of the model. (The computations 
reported in this communication took several C P U  hours on the Cray-YMP 
supercomputer at HLRZ.)  

The cluster size distribution seemingly develops quickly toward a 
power law behavior 

ns ~- a(t) s -~ (1) 

However, closer examination reveals that the exponent r may not be well- 
defined in two dimensions; see below. For  growth models one usually 
assumes the cluster size distribution scaling of the form (2'12) 

n~(t) ~ s -2F(s / t~)  (2) 

where z is the dynamic critical exponent. For  large times, i.e., for sit z ~ 1, 
one assumes 

F ( x ~  1) oc x 2 ~ (3) 

Note that in one dimension the exponents are z = - 1  and z = 1/2. The 
cluster size scaling applies, and the scaling function F(x)  has been studied 
numericallyY ~ Its large-x behavior is an exponential decay (for D = 1). 

Generally, the scaling forms (2) (3) are valid for ~ < 2 and suggest the 
buildup of the power law cluster size distribution (1) with a ( t ) ~  t z(2-~). 
The time dependence of the coefficient is difficult to confirm due to the 
smallness of the difference ( 2 - ~ ) ;  see below. However, the power law 
s-dependence is clearly seen in Fig. 1. 
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Initially, the apparent exponent r increases systematically with time. 
This can also be seen on the basis of Fig. 2, which is a plot of cluster num- 
bers at fixed size .7 as a function of time up to 8192 MCs for several values 
of g. To more clearly illustrate the differences between cluster sizes, we 
show the change in n~ from its initial value (actually, its value at 
t = 2  MCs). At small times, say less than 100 or 200 MCs, n~ for larger 
clusters decreases more rapidly, causing the apparent r value to increase. 

For  each cluster size there exists a crossover to a much lower rate of 
decrease. This crossover occurs progressively later (and is sharper) for 
larger clusters. What is important to note is that at this later stage the 
number of smaller clusters decreases more rapidly than the larger ones. 
This is not readily apparent from Fig. 2, but can be seen to be the case 
from Fig. 3, in which we collapse the data at t = 128 MCs to the same 
point and plot the subsequent changes in n~. Clearly, the smaller clusters 
decrease more rapidly, which leads to a decrease in the value of r. We see 
that, in fact, the exponent r undergoes a systematic change with time and 
is not well-defined. After an initial period in which it increases with time to 
a maximum value approaching 2, there is a crossover to a decreasing ~. 

In the absence of data for extremely large times, we can only conjec- 
ture a possible scenario for the breakdown of the cluster size scaling, 
relations (1)-(3). The most plausible one is that the growth proceeds in 
two stages. Initially, clusters of all sizes coarsen, and the scaling applies. In 
the later stage the growth mode changes: the largest clusters "eat up" the 
smaller clusters and dominate the growth process. A similar mechanism 
may be responsible for the absence of a systematic trend in the apparent 
values found for the voter model. (4) 

We also studied the roughness of a growing interface between spin + 1 
and spin - 1  regions. One starts with two semi-infinite regions with spins 
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Fig. 3. Change in n~ with time after t = 128 MCs; see text. Cluster sizes are the same as 
for Fig. 2. 

+ 1 on the left and spins - 1  on the right separated by a flat vertical 
interface of length L. In these simulations we used L = 300 and periodic 
boundary conditions in both directions; thus, the second interface was 
present on the opposite side of the lattice. However, in the simulations, the 
"main" interface has never grown large enough to reach all the way 
around, so that no special consideration of the boundary-condition-related 
finite-size effects was needed. 

Following Derrida and Dickman, (j3) we define the width of the 
interface as 

W(t) = ~  [ 1 - m ~ j ( t ) ]  (4) 
i 

where mi, j ( t ) =  (cri, j ( t ))  is the average over independent realizations, of 
the spin at a site (i, j) ,  with i referring to the horizontal coordinate and j 
to the vertical coordinate. The sum is over all sites having the same value 
of j .  Because of periodic boundary conditions, this result is independent of 
j. Note that while the definition (4) is computationally convenient, it can 
only be used in the problems in which the profile ( a )  converges rapidly 
enough to the asymptotic values at the far right ( - 1  in our case) and far 
left ( + 1). Our numerical results are presented in Fig. 4. A clear indication 
was found for the diffusive interface width growth, 

w ( t )  ~ t '/2 (5) 

We are not aware of any results for other automaton models, such as the 
voter model, to be compared with (5). A study of surface roughening in the 
deterministic Q2R automata is currently in progress. (j4) 

In conclusion, the two-spin-majority automaton provides a convenient 
test model for cluster and interface growth. The most interesting result of 
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Fig. 4. 
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Width W(t) of an interface as a function of time t for system size L = 300. 

o u r  n u m e r i c a l  s tudy  in two d i m e n s i o n s  is the b r e a k d o w n  of the s imple  

c lus ter  size scal ing descr ip t ion .  T o  the ex ten t  tha t  the  concep t  of un ive r sa l i ty  
appl ies  here,  the  two- sp in  m o d e l  seems to be in  the same  un ive r sa l i ty  class 

as the  vo te r  model .  
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